1. Rapid conversions:
  2. Substitution method
    • operations in base
  3. Successive divisions and multiplications
    • operations in base Exercise 1.
&=0111\ 0110\ 0111 \ 0010,1001\ 0100\ 1000_{(2)}=7672,948_{(16)}\end{align}$$ Exercise 2. $7672,948_{(16)}=?_{(8)}$ $$\begin{align} 7672,948_{(16)}= 13121302,211010_{(8)} \end{align}$$ 1 hexa digit is transformed into 2 octal digits $7_{(16)}=1\times4^1+3\times4^0$ Exercise 3. $$\begin{gathered}\underbrace{10\ldots0}_{n}=2^n\\ \underbrace{11\ldots1}_{n}=2^{n+1}-1\\ 0,\underbrace{0\ldots1}_n=2^{-(n+1)}\\ 0,\underbrace{1\ldots1}_n=1 \end{gathered}$$ Exercise 4. $1342,23_{(5)}=?_{(8)}$ \ $$\begin{align} 1342,23_{(5)}&=1_{(5)}\times 5^3+3_{(5)}\times 5^2+4_{(5)}\times5+2_{(5)}\times5^0+2_{(5)}\times 5^{-1}+3_{(5)}\times5^{(-2)}\\ &=1_{(8)}\times 5_{(8)}^3+3_{(8)}\times 5^2+4_{(8)}\times5_{(8)}+2_{(8)}\times5_{(8)}^0+2_{(8)}\times 5_{(8)}^{-1}+3_{(8)}\times5^{(-2)}\\ \end{align}

Exercise 7.