N(b)β=N(k)β²β
- Rapid conversions:
b,hβ{2,22,β¦}
- Substitution method
- Successive divisions and multiplications
- b>h
- operations in base b
Exercise 1.
73162,451(8)β=?(16)β
&=0111\ 0110\ 0111 \ 0010,1001\ 0100\ 1000_{(2)}=7672,948_{(16)}\end{align}$$
Exercise 2.
$7672,948_{(16)}=?_{(8)}$
$$\begin{align} 7672,948_{(16)}= 13121302,211010_{(8)}
\end{align}$$
1 hexa digit is transformed into 2 octal digits $7_{(16)}=1\times4^1+3\times4^0$
Exercise 3.
$$\begin{gathered}\underbrace{10\ldots0}_{n}=2^n\\
\underbrace{11\ldots1}_{n}=2^{n+1}-1\\
0,\underbrace{0\ldots1}_n=2^{-(n+1)}\\
0,\underbrace{1\ldots1}_n=1
\end{gathered}$$
Exercise 4.
$1342,23_{(5)}=?_{(8)}$
\
$$\begin{align}
1342,23_{(5)}&=1_{(5)}\times 5^3+3_{(5)}\times 5^2+4_{(5)}\times5+2_{(5)}\times5^0+2_{(5)}\times 5^{-1}+3_{(5)}\times5^{(-2)}\\
&=1_{(8)}\times 5_{(8)}^3+3_{(8)}\times 5^2+4_{(8)}\times5_{(8)}+2_{(8)}\times5_{(8)}^0+2_{(8)}\times 5_{(8)}^{-1}+3_{(8)}\times5^{(-2)}\\
\end{align}
03,73773,41β(16)βΓ(16)ββββ
Exercise 7.
765,23(8)β=?(6)βwithΒ 2Β digitsββ