Theory Recap

group if:

  • Associative
  • has identity element
  • all elements have a symmetric ring if:
  • Abelian group
  • semigroup
  • Distributivity holds

Distributivity

\begin{align} \forall x,y,z\in R: &x(y+z)=xy+xz\\ &(y+z)x=yz+zx \end {align} $$

subgroup of if

  • H stable part of
  • Group

Characterization theorem of a subgroup

gr. homomorphism

f group isomorphism if

  • f - homomorphism
  • f - bijective (inj+surj) ()

Exercises

Exercise 1.

Show that ) is a group Associativity: Let

Identitiy element: Let be the identity element

Exercise 2.

ring

\forall f,g\in R^M:&(f+g)(x)=f(x)+g(x)\\ \\ &(f\cdot g)(x)=f(x)\cdot g(x) \end{align}$$ Show that $(R^M,+,\cdot)$ is a ring. If R is comm or has id, does $R^M$ have the same property Associativity $$\begin {gathered} \forall f,g,h\in R^M:(f+g)+h=f+(g+h) \\ \end {gathered}

\begin{rcases} ((f+g)+h)(x)=(f+g)(x)+h(x)=f(x)+g(x)+h(x)\ (f+(g+h))(x)=f(x)+(g+h)(x)=f(x)+g(x)+h(x)\ \end{rcases}\implies \checkmark

\forall f,g\in R^M:f+g=g+f

$$\begin{rcases} (f+g)(x)=f(x)+g(x)\\ (g+f)(x)=g(x)+f(x)\\ \end{rcases}\implies \checkmark$$ Identity element: $$\begin{gathered} \exists e\in R^M \text{ s.t. } \forall f\in R^M:e+f=f+e=f\\ \theta\\ (e+f)(x)=f(x)\Leftrightarrow e(x)+f(x)=f(x)\Leftrightarrow e(x)=0=\theta(x) \end{gathered}

Symmetrical element:

Subgroup Associativity

Distributivity:

Exercise 3

Prove that ,

Let

Symmetrical elements:

Exercise 5

  1. stable subset of

  2. group

  3. subgroup of

det A\not= 0, det B\not = 0\\ det(A\cdot B)=det A\cdot det B\not = 0\\ \end{rcases}\implies GL_n(\mathbb{C}) \text{ stable subset}
  1. "" on Let identity element for
  2. SL

Important

The first exercise in algebra exams is giving definitions and examples

Exercise 7

Exercise 9

ring i. invertible ii. field n prime\

i. inv.