Theory Recap
group if:
- Associative
- has identity element
- all elements have a symmetric ring if:
- Abelian group
- semigroup
- Distributivity holds
Distributivity
\begin{align} \forall x,y,z\in R: &x(y+z)=xy+xz\\ &(y+z)x=yz+zx \end {align} $$
subgroup of if
- H stable part of
- Group
Characterization theorem of a subgroup
gr. homomorphism
f group isomorphism if
- f - homomorphism
- f - bijective (inj+surj) ()
Exercises
Exercise 1.
Show that ) is a group Associativity: Let
Identitiy element: Let be the identity element
Exercise 2.
ring
\forall f,g\in R^M:&(f+g)(x)=f(x)+g(x)\\ \\ &(f\cdot g)(x)=f(x)\cdot g(x) \end{align}$$ Show that $(R^M,+,\cdot)$ is a ring. If R is comm or has id, does $R^M$ have the same property Associativity $$\begin {gathered} \forall f,g,h\in R^M:(f+g)+h=f+(g+h) \\ \end {gathered}\begin{rcases} ((f+g)+h)(x)=(f+g)(x)+h(x)=f(x)+g(x)+h(x)\ (f+(g+h))(x)=f(x)+(g+h)(x)=f(x)+g(x)+h(x)\ \end{rcases}\implies \checkmark
\forall f,g\in R^M:f+g=g+f
$$\begin{rcases} (f+g)(x)=f(x)+g(x)\\ (g+f)(x)=g(x)+f(x)\\ \end{rcases}\implies \checkmark$$ Identity element: $$\begin{gathered} \exists e\in R^M \text{ s.t. } \forall f\in R^M:e+f=f+e=f\\ \theta\\ (e+f)(x)=f(x)\Leftrightarrow e(x)+f(x)=f(x)\Leftrightarrow e(x)=0=\theta(x) \end{gathered}Symmetrical element:
Subgroup Associativity
Distributivity:
Exercise 3
Prove that ,
Let
Symmetrical elements:
Exercise 5
-
stable subset of
-
group
-
subgroup of
-
- "" on Let identity element for
- SL
Important
The first exercise in algebra exams is giving definitions and examples
Exercise 7
Exercise 9
ring i. invertible ii. field n prime\
i. inv.