Ex 7. Let be a group. Show that: i. is abelian
ii. If for every , then is abelian.
\text{Let } x,y\in G\implies xy\in G\implies (xy)^2=1\ (1)\\ x^2=1, y^2=1\implies x^2y^2=1\ (2)\\ (1),(2)\implies (xy)^2=x^2y^2\overset{i.}{\implies}G \text{ abelian} \end{align}